Dynamic flow $f=(f^+_e,f^-_e)$ in dynamic flow network $N=(G,s,t,\nu,\tau)$ with capacities $\nu_e \gt 0$ and travel times $\tau_e \geq 0$:
with cumulative in-/outflow $F^\pm_e(\theta) \coloneqq \int_0^\theta f^\pm_e(\zeta)\diff\zeta$, value up to $T$: $\fval{f,T} \coloneqq \sum_{e \in \edgesTo{t}}F^-_e(T) - \sum_{e \in \edgesFrom{t}}F^+_e(T)$
respects capacities if $f^-_e(\theta) \leq \nu_e$ for almost all $\theta \in \IR$, $e \in E$
weak flow conservation at nodes if $\sum_{e \in \edgesFrom{v}}F^+_e(\theta) \leq \sum_{e \in \edgesTo{v}}F^-_e(\theta)$ for all $\theta \in \IR$, $v \neq s,t$ weak flow conservation at nodes and $\fval{f,\theta} \geq 0$ for all $\theta \in \IR$
strong flow conservation at nodes if $\sum_{e \in \edgesFrom{v}}F^+_e(\theta) = \sum_{e \in \edgesTo{v}}F^-_e(\theta)$ for all $\theta \in \IR$, $v \neq s,t$ weak flow conservation at nodes and $\fval{f,\theta}$ non-decreasing
weak flow conservation on edges if $F^-_e(\theta+\tau_e) \leq F^+_e(\theta)$ for almost all $\theta \in \IR$, $e \in E$
strong flow conservation on edges if $F^-_e(\theta+\tau_e) = F^+_e(\theta)$ for almost all $\theta \in \IR$, $e \in E$
Extreme Value Theorem: $K$ non-empty, compact, $\Phi: K \to \IR$ continuous mmmmmmmmmmmmmmm $\implies$ $\exists x^* \in K: \Phi(x^*) = \sup\Set{\Phi(x) \SMid x \in K}$
st
$(x_e)$ static $s$,$t$-flow in $(G,s,t,\nu)$ with path-cycle-decomposition $(x_p)$
→ associated temporally repeated flow $f=(f^+_e)$ is direct dynamic flow corresponding to path-based dynamic flow
\[f^+_p(\theta) \coloneqq \begin{cases}0, &\text{ if } \theta \lt 0 \\ x_p, &\text{ if } \theta \geq 0\end{cases}.\]
Lemma 3.11: $(x_e)$ feasible $s$,$t$-flow $\implies$ associated temp. rep. flow $f$ is feasible direct dynamic flow with
Input: $s$,$t$-network $\network=(G,s,t,\nu,\tau)$, time horizon $T$ Output: maximum dynamic flow $(f^+_e,f^-_e)$ with until $T$
(1) Construct $\network'$ from $\network$ by adding edge $ts$ with $\tau_{ts}=-T$ and $\nu_{ts}=\infty$
(2) Compute min-cost flow $x'$ of value $0$ in $\network'$ (with $\tau_e$ as cost)
(3) Determine path-cycle decomposition $(x'_p)$ of restriction of $x'$ to $\network$
(4)Return: Temporally repeated flow $f$ associated with $(x_p)$
dynamic $s$,$t$-cut with time horizon $T$: $(\beta_v) \in \IR^V$ with $\beta_s=0$, $\beta_t \geq T$ mmmm $v$ on $t$-side before $\beta_v$, on $s$-side after $\beta_v$
feas. dyn. flow $f$ is quickest flow with value $v$ if $\exists T \geq 0: \fval{g,\theta} \lt v = \fval{f,T}$ f.a. $\theta \in [0,T)$ and feas. dyn. flows $g$.
Quickest Flow Algorithm:
Input: $s$,$t$-network $\network=(G,s,t,\nu,\tau)$, value $v$ Output: quickest flow $(f^+_e,f^-_e)$ with value $v$ (1)Repeat (2).. Guess time horizon $T$ (3).. Compute maximum dynamic flow $f$ until $T$ (4)Until $\fval{f,T}=v$
Lemma 3.20: For any fixed network $\network$ the function
\[V: \IRnn \to \IRnn, T \mapsto \max\Set{\fval{f,T} \SMid \begin{array}{l}f \text{ a feas. dyn.}\\\text{flow in } \network\end{array}}\]
is zero on $[0,\tauPmin]$ and strictly increasing on $(\tauPmin,\infty)$.